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where the sum is over all unordered 

pairs {u,v} of distinct vertices in G. Xu and Zhang in some research papers computed this polynomial for polyhex and 
TUC4C8(S) nanotorus. In this paper, a new algorithm for these calculations is presented. We also compute the Hosoya 
polynomial of TUC4C8(R) nanotorus.  
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1. Introduction 
 
The boiling point of a compound is an important 

property for the simulation of processes in chemical and 
petroleum industries. So it is important to find theoretical 
methods for the estimation of boiling point of compunds 
that are not yet synthesized or whose boiling point is 
unknown. One of the most important methods is finding a 
parameter that correlates the physico-chemical or 
biological properties of the compound under 
consideration.  

A topological index for a chemical compound is a 
number related to the molecular graph of compound, G, 
describing some of its physic-chemical properties. The 
Wiener index [1] was the first topological index reported 
in the chemical literature. It is defined as the sum of all 
distances between vertices of the graph under 
consideration. Here, the distance between two vertices x 
and y of G, d(u,v), is defined as the length of a minimal 
path connecting them.  

After several years, Hosoya [2] pointed out that the 
Wiener index can be computed from the topological 
distance matrix of the graph representing the hydrogen-
depleted molecule. Hosoya [3] also introduced a graph 
polynomial, which he named the Wiener polynomial of the 
graph. In recent years, many chemists preferred the name 
Hosoya polynomial [4] and so we use this name 
throughout the paper. This polynomial is defined as 
H(G,q) = , where γi is the number of pairs of 
vertices at distance i and l is the longest distance 
(diameter) in the graph. 

Diudea was the first scientist who considered graph 
theoretical problems of nanotechnology. In some research 
papers he and his co-workers [5-10] computed too many 
distance based topological indices and counting 
polynomials of nanotubes, nanotori and fullerenes. The 
first author of the present paper (ARA) [11-20] continued 
this program and computed the Wiener index and Hosoya 
polynomial of TUC4C8(R/S) nanotubes and TC4C8(R/S) 

nanotori.  We also stimulated the papers by Xu [21-23] in 
which the authors computed Hosoya polynomials of 
C4C8(R/S) nanostructures. Our notation is standard and 
mainly taken from the book of Trinajstic24 and papers by 
Diudea mentioned above.  

 
 
2. Main results and discussion 
 
In this section exact formulas for the Hosoya 

polynomial of TC4C8(R/S) nanotori are derived. Since 
),(|)),((/ 1 GWqGHdqd q ==

 the Wiener index of these 
nanotori are also computed.  

 
2.2 Hosoya polynomial of TC4C8(R) nanotorus 
 
Consider the molecular graph of an TC4C8(R) 

nanotorus, Fig. 1, and its 2-dimensional lattice, Fig. 2. To 
simplify our argument, this nanotorus is denoted by T = 
TUC4C8(R)[m,n], where m is the number of rows and n is 
the number of columns, (Fig. 2). 

 

 
 

Fig. 1. The 3D-representation of an TC4C8(R) nanotorus. 
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Fig. 2. The 2D-lattice of an TC4C8(S) nanotorus. 

 
Choose four base vertices a(i,j), b(i,j), c(i,j) and d(i,j) 

from the molecular graph of T, Fig. 2. For computing 
D(T), we must define 16 matrices. To define these 
matrices, we first make the partition of the vertex set of T, 
into four sets A, B, C and D. A is the set of all vertices 
with the same position in the rhombs. The sets B, C and D 
are defined similarly. Define A

aD )1,1(  to be the matrix in 
which (i,j)-entry is defined as the distance between the 
vertex a(i,j) of A and the base vertex a(1,1). The other 
matrices are defined similarly. They are as follows: 
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We notice that by symmetry, it is enough to compute 

eight of these matrices. Remark that four matrices A
aD )1,1( , 

B
bD )1,1( , C

cD )1,1(  and D
dD )1,1(  are equal. Consider the 

permutation µ = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
23...1nn1
n1n...321 . It is easy to see 

that the matrices B
aD )1,1(  and B

cD )1,1(  are obtained from 
D
aD )1,1(  and D

cD )1,1( . By symmetry of Fig. 2, it is possible 
to compute the distance matrix evaluated at the base vertex 
d from the same matrix for the vertex b. On the other hand, 
the matrices D

bD )1,1( , C
dD )1,1(  and A

dD )1,1(  is computed 

from B
dD )1,1( , C

bD )1,1(  and A
bD )1,1(  by trace of µ.  

We now count the repeated entries of these matrices 
to find the following equation: 

 

              (1) 
 

where A
aD )1,1(  = [dij]. Other polynomials are similar and so 

the Hosoya polynomial of this nanotorus is computed as 
follows: 

   
            (2) 

 
Some distance matrices: Suppose m is even. If m is 

odd then substitute m/2+1 by (m+1)/2. We first assume 
that 1≤ i ≤ m/2+1. 

Table 1. ][)1,1( ij
A
aD α=  

j = 1 2 ≤ j ≤ n/2+1  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∤ 2) 

1 ≤ j ≤ n/2+1  (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∤ 2) 

For i = 1 

α11 = 0 α 1j = α 1(j-1) + 3 

And for  
1< i ≤ m/2+1 

 i ≤ j     α ij = α (i-1)j + 1 
i > j      α ij = α (i-1)j + 3 

Other entries of this matrix is  α ij = α i(n-j+2). 
Table 2. ][)1,1( ij

C
aD β=  

j = 1 j = 2 3 ≤ j ≤ n/2+1  (n | 2) 
3 ≤ j ≤ (n+1)/2 (n∤ 2) 

1 ≤ j ≤ n/2+1  (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∤ 2) 

For i = 1 

β11 = 2 β 12 = 
3 

β 1j = β 1(j-1) + 3 

And for  
1< i ≤ m/2+1 

i < j         β ij = β (i-1)j + 1 
i ≥ j         β ij = β (i-1)j + 3 

Other entries of this matrix is  β ij = β i(n-j+2). 
Table 3. ][)1,1( ij

D
aD η=  

For i = 1 j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∤ 2) 

And for  
1< i ≤ m/2+1 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∤ 2) 
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η11 = 1 η 1j = η 1(j-1) + 3 i ≤ j     η ij = η (i-1)j + 1 
i > j      η ij = η (i-1)j + 3 

Other entries of this matrix is  η ij = η i(n-j+1) +1. 
 

Table 4 . ][)1,1( ij
A

bD π=  

j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∤ 2) 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∤ 2) 

For i = 1 

π11 = 1 π 1j = π 1(j-1) + 3 

And for  
1< i ≤ m/2+1 

i+1 ≤ j     π ij = π (i-1)j + 1 
else     π ij = π (i-1)j + 3 

Other entries of this matrix is  π ij = π i(n-j+1) +1. 
Table 5. ][)1,1( ij

C
bD ρ=  

j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∤ 2) 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∤ 2) 

For i = 1 

ρ11 = 1 ρ 1j = ρ 1(j-1) + 3 

And for  
1< i ≤ m/2+1 

i ≤ j         ρ ij = ρ (i-1)j + 1 
i > j         ρ ij = ρ (i-1)j + 3 

Other entries of this matrix is  ρ ij = ρ i(n-j+2) +1. 
 

Table 6. ][)1,1( ij
D
bD τ=  

j = 1 j = n 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j < (n+1)/2 (n∤ 2) 

n/2 < j ≤ n-1    (n | 2) 
(n+1)/2 ≤ j ≤ n-1 (n∤2) 

For i = 1 

τ11 = 2  τ 1n = 1 τ 1j = τ 1(j-1) + 3 τ 1j = τ 1(j+1) + 3 

1 ≤ j ≤ n/2    (n | 2) 
1 ≤ j < (n+1)/2 (n∤2) 

n/2 < j ≤ n    (n | 2) 
(n+1)/2 ≤ j ≤ n  (n∤ 2) 

For  
1< i ≤ m/2+1 

i < j+1         τ ij = τ (i-1)j + 1 
i > j             τ ij = τ (i-1)j + 3 

i ≥ n-j        τ ij = τ (i-1)j + 1 
otherwise  τ ij = τ (i-1)j + 3 

 

 

Table 7. ][)1,1( ij
A
cD δ=  

j = 1 2 ≤ j ≤ n/2+1  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∤ 2) 

1 ≤ j ≤ n/2+1  (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∤ 2) 

For i = 2 

δ21 = 1 δ 2j = δ 2(j-1) + 3 

And for  
2< i ≤ m/2+1 

i < j+1    δ ij = δ (i-1)j + 1 
else         δ ij = δ (i-1)j + 3 

If i = 1 then δ 11 = 2 for j = 1 & δ 1j = δ 2j -1 for 1< j ≤ n. 
Other entries of this matrix is δ ij = δ i(n-j+1) where n/2+1< j ≤ n (n|2) or (n+1)/2< j ≤ n (n∤2) 

 

Table 8.
 

][)1,1( ij
D
cD γ=  

j = 1 2 ≤ j ≤ n/2  (n | 2) 
2 ≤ j ≤ (n+1)/2 (n∤ 2) 

1 ≤ j ≤ n/2   (n | 2) 
1 ≤ j ≤ (n+1)/2  (n∤ 2) 

For i = 1 

γ11 = 1 γ 1j = γ 1(j-1) + 3 

And for  
1< i ≤ m/2+1 

i < j+1       γ ij = γ (i-1)j + 1 
i ≥ j+1        γ ij = γ (i-1)j + 3 

Other entries of this matrix is  γ ij = γ i(n-j+2) +1. 
 

 
If m/2 + 1< i ≤ m then we define αij  =  α(m-i+2)j, βij  =  

δ(m-i+2)j, ηij  =  γ (m-i+2)j, πij = ρ(m-i+2)j, ρ ij = π(m-i+2)j, τ ij = τ (m-

i+2)j, δ ij = β(m-i+2)j and γ ij = η(m-i+2)j. Applying the same 
calculations as above completes our algorithm for 
computing Hosoya polynomial of TC4C8(R) nanotorus.  

 
2.3 Hosoya polynomial of TUC4C8(S) 
 
Consider the molecular graph of an TC4C8(S) 

nanotorus, Fig. 3, and its 2-dimensional lattice, Fig. 4. To 
simplify our argument, this nanotorus is denoted by S = 

TUC4C8(S)[m,n], where m is the number of rows and n is 
the number of columns. Choose eight base vertices xk(1,1), 
xk∈{ a1, b1, c1, d1, a2, b2, c2, d2}, Fig. 4. 
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Fig. 3. 3D-Representation of an TUC4C8(S) nanotube. 

 
Fig. 4. The 2–dimensional fragments of an TUC4C8(S) 

nanotube. 
 

 We partition V(S) into eight parts as P = {A1, A2, B1, 
B2, C1, C2, D1, D2} where Xj∈P and Xj = {xk(i,t) | 1 ≤ i ≤ 
m, 1 ≤ t ≤ n, k = j}. To compute D(S), we must calculate 
matrices j

k

X
)1,1(xD . For example 1

1

A
)1,1(aD  is a matrix in 

which its entries are the distances from a1(1,1) to all of 
vertexes A1. The first row of D(S) is the all entries of eight 
matrices of vertex a1(1,1), and other rows are obtained 
similarly. We notice that making use of symmetry in S, we 
don't need to investigate the vertices with subscript 2. This 
fact has been shown in Fig. 4. Hence the calculation of 
two hundred fifty six matrices presented above, decreases 
to thirty two matrices.  

Notice that finding the matrices of other rows and 
columns are the same and is omitted. Now we enumerate 
the entries of distance matrix D(S).  

( ) ∑=
ji

dX
x

ijj

k
qnmqSH

,
)1,1( 2

1,
                   (3)

 

 
So the Hosoya polynomial of T is 

( )∑×=
1

1
,

)1,1( ,2),(
xX

X
x

j

j qSHqSH . 

Some distance matrices: Suppose m is even and 1 ≤  
i  ≤ m/2 + 1 (If m is odd then substitute m/2+1 by      
(m+1)/2 ).  

Table 1. ]d[D ij
A

)1,1(a
1

1
=  

j = 1 2 ≤ j ≤ n/2+1 (n|2) 
2 ≤ j ≤(n+1)/2 (n∤2) 

1 ≤ j ≤ n/2+1 (n|2) 
1 ≤ j ≤(n+1)/2 (n∤2) 

i = 1 

d11=0 dij = d1(j-1) + 4 

1< i ≤ m/2+1 

i ≤ j         dij = d(i-1)j + 2 
i > j         dij = d(i-1)j + 4 

dij = di(n-j+2) where [n/2+1< j ≤ n & (n|2)] or [(n+1)/2< j ≤ n & (n∤2)] 
 
• It is clear that four matrices 1

1

B
)1,1(bD , 1

1

B
)1,1(cD , 

1

1

D
)1,1(dD  and 1

1 )1,1(
A
aD

 
are the same.  

• By adding one to all entries of 1

1

A
)1,1(aD , we 

obtain 1

1

C
)1,1(bD . 

• The second, third, …, mth rows of 1

1

A
)1,1(dD  are the 

same as the first, …, (m-1)th rows of 1

1

A
)1,1(aD , respectively. 

Moreover, the first and the second row are equal, except 
the first entry of first row which is equal to 3.  

 

Table 2. The function ]s[D ij
B

)1,1(a
1

1
= . 

 
j = 1 j = 2 2 ≤ j ≤ n/2+1 (n|2) 

2 ≤ j ≤(n+1)/2+1 (n∤2) 
j = 1 2 ≤ j ≤ n/2+1 (n|2) 

2 ≤ j ≤(n+1)/2+1 (n∤2) 
i = 
1 

s11 = 
1 

s12 = 
3 

s1j = s1(j-1) + 4 

1< i ≤ 
m/2+1 

si1 = s(i-1)1 + 4 i-1 ≤ j      sij = s(i-1)j + 2 
i-1 > j      sij = s(i-1)j + 4 

Then sij = si(n-j+3) where [n/2+1< j ≤ n & (n|2)] or [(n+1)/2< j ≤ n & (n∤2)] 
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• By adding one to all entries of 1

1

B
)1,1(aD , we 

obtain 1

1

C
)1,1(aD . 

• The first and second row of 1

1

B
)1,1(dD are equal; 

also the rows from 2 to m are equal to the rows from 1 to 
(m−1) of 1

1

B
)1,1(aD , respectively.  

• The first row of 1

1

C
)1,1(dD  and the first row of 

1

1

B
)1,1(aD are the same; the second until mth rows of this 

matrix, obtained by adding the number two to all entries of 
the rows from one to (m−1) of 1

1

B
)1,1(aD . 

• If for columns 1≤ j ≤ n/2+1 (n is even) or 1≤ j ≤ 
(n+1)/2 (n is odd), we add entries of 1

1

B
)1,1(aD  by 2; and 

define vij = vi(n-j+2), where n/2+1 < j ≤ n (n is even) or 
(n+1)/2 < j ≤ n (n is odd). Then ]v[D ij

D
)1,1(a

1

1
= . 

• The rows from two to m of 1

1

B
)1,1(cD  are equal to 

the rows from one to (m−1) of 1

1

D
)1,1(aD ; and the first entry 

of the first row is one and remaining entries are equal to 
the second row. 

• For columns 1≤ j ≤ n/2 (n is even) or 1≤ j ≤ 
(n+1)/2 (n is odd), we add one to the entries of 1

1

D
)1,1(aD  

and for columns n/2 < j ≤ n (n is even) or (n+1)/2 < j ≤ n 
(n is odd) we add -1 to the entries of 1

1

D
)1,1(aD to 

obtain 2

1

D
)1,1(aD . 

• The first and second rows of ]w[D ij
B

)1,1(c
2

1
=  are 

equal, except the last entry of the first row which is equal 
to 2; and the rows from two to m are calculated from the 
equation wij = s(i-1)(n-j+1).  

Table 3. ]r[D ij
A

)1,1(a
2

1
=  

j = 1 j = n 2 ≤ j ≤ n/2 (n|2) 
2 ≤ j ≤ (n+1)/2 (n∤2) 

n/2 < j < n  (n|2) 
(n+1)/2 < j < n (n∤2) 

i = 1 

r11 = 1 r1n = 3 r1j = r1(j-1) + 4 r1j = r1(j+1) + 4 
1 ≤ j ≤ n/2         (n|2) 
1 ≤ j ≤ (n+1)/2 (n∤2) 

n/2+1 ≤ j ≤ n (n|2) 
(n+1)/2+1 ≤ j ≤ n (n∤2) 

1< i ≤ 
m/2+1 

i ≤ j        rij = r(i-1)j + 2 
i > j        rij = r(i-1)j + 4 

i ≤ n-j+2  rij = r(i-1)j + 2 
else          rij = r(i-1)j + 4 

 
• The matrix 2

1

D
)1,1(dD is equals to 2

1

A
)1,1(aD . 

• In matrix 2

1

A
)1,1(dD  the first entry is 4, and other 

entries of the first row are equal to entries in the second 
row. We also add one to entries in the first row until 
(m−1)th row of 2

1

A
)1,1(aD  to obtain the rows from two to m 

of this matrix, respectively. 
 

• The entries of ]u[D ij
B

)1,1(b
2

1
=  are obtained from 

2

1

A
)1,1(aD  by the equation uij = ri(n-j+1)  

• The matrix 2

1

C
)1,1(cD  is obtained from above 

equation. 
• If we add one by all entries of 2

1

B
)1,1(bD then we 

acquire 2

1

C
)1,1(bD . 

Table 4. ]e[D ij
B

)1,1(a
2

1
= . 

 
j = 1 2 ≤ j ≤ n/2        (n|2) 

2 ≤ j ≤ (n+1)/2 (n∤2) 
1 ≤ j ≤ n/2         (n|2) 
1 ≤ j ≤ (n+1)/2 (n∤2) 

i = 1 

e11=2 e1j = e1(j-1) + 4 

1< i ≤ m/2+1 

i ≤ j         eij = e(i-1)j + 2 
i > j         eij = e(i-1)j + 4 

eij = ei(n-j+1) where [n/2 < j ≤ n & (n|2)] or [(n+1)/2< j ≤ n & (n∤2)] 
 
• The matrix 2

1

D
)1,1(cD  is equal to 2

1

B
)1,1(aD . 

• Two matrices 2

1

C
)1,1(aD  and 2

1

D
)1,1(bD  are achieved 

by adding 1 to each entry of 2

1

B
)1,1(aD .  

• The first and second rows of 2

1

A
)1,1(bD  and 2

1

C
)1,1(dD  

are equal and the second until last row of these matrices 

are computed by adding 2 to the first until (m−1)th row of 
2

1

B
)1,1(aD . 

• The first and second rows of matrices 2

1

A
)1,1(cD  

and 2

1

B
)1,1(dD  are the same and the rows from two to m are 

equal to the rows from one to (m−1) of 2

1

C
)1,1(aD . 



1314                                                                                  A. R. Ashrafi, H. Shabani 
 

• The matrix ]z[D ij
D

)1,1(c
1

1
=  obtained from the 

matrix 2

1

B
)1,1(aD by the relations below;  

if 1≤ j ≤ n/2 (n is even) or 1≤ j ≤ (n+1)/2 (n is odd) 
then zij = eij – 1; and if, n/2 <j≤ n (n is even) or (n+1)/2 < j 
≤ n (n is odd) then zij = eij + 1. 

• By adding 1 to all entry of ]d[D ij
D

)1,1(c
1

1
=  we 

receive to the matrix ]d[D ij
D

)1,1(b
1

1
= . 

• The first and second rows of 1

1

A
)1,1(cD  are equal; 

and the second until mth row are equal to the first until 
(m−1)th row of 1

1

D
)1,1(bD , respectively. 

• The first row of 1

1

A
)1,1(bD  is equal to the first row 

of 1

1

D
)1,1(cD , and the rows from two to m are obtained by 

adding 2 to entries of  the rows from one to (m−1) of 
1

1

D
)1,1(cD . 

• If m/2+1 < i ≤ m then we define 
[ ]

mi1i
x
j

X
)1,1(x )X(D kj

k ≤≤
= , where i

x
j )X( k is ith row of the 

matrix and k∈{1,2}. To compute rows for m/2+1 < i ≤ m, 
we consider the case of a1(1,1). Then,  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= +

22

2/2

12/1

11

)1,1(

)(

)(
)(

)(

2

2

1

1

1

1

d

m
d

m
a

a

A
a

D

D
A

A

D

M

M , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= +

22

2/2

12/1

11

)1,1(

)(

)(
)(

)(

2

2

1

1

1

1

d

m
d

m
a

a

B
a

C

C
B

B

D

M

M , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= +

22

2/2

12/1

11

)1,1(

)(

)(
)(

)(

2

2

1

1

1

1
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In a similar way we acquire other matrices. 
The other cases are calculated in a similar way as 

above and as in Section 2.1. 
 

 
3. Conclusions 
 
In this paper algorithms for computing Hosoya 

polynomials of TUC4C8(R/S) are presented. We prepared 
some MATLAB programs for these algorithms. The 
running time of our MATLAB codes show that our 
algorithms are efficient. 
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